Acta Cryst. (1993). C49, 844-846

Etude de la Regio et de la Stéréospecificité de l'Addition du Phénylnitriloxyde au 3-Methyl-2-benzylidene Indan-1-one. Structure de l'Adduit Obtenu

L. TOUPET*

Groupe Matière Condensée et Matériaux, URA au CNRS n° 040804, Université de Rennes I, Campus de Beaulieu, 35042 Rennes CEDEX, France

R. CHEKTI ET M. SOUFIAOUI

Laboratoire des Cycloadditions, Université Mohammed V, Avenue Ibn Batouta, Rabat, Maroc

R. CARRIE

Groupe de Physicochimie Structurale, UA au CNRS n° 040704, Université de Rennes I, Campus de Beaulieu, 35042 Rennes CEDEX, France

(Reçu le 18 mai 1992, accepté le 26 octobre 1992)

Abstract

The structure determination of the title compound, 3-methyl-3',4'-diphenylindan-2-spiro-5'-(4',5'-dihydroisoxazol)-1-one, was undertaken in order to establish unambiguously the regioselectivity of the synthesis reaction. It was also necessary to obtain precise geometrical data of such a compound. The most important observation in this compound is intermolecular interactions through hydrogen bonding.

Commentaire

La réaction de cycloaddition dipolaire-1,3 entre les arylnitriloxydes et les arylidènes indanones portant un substituant alkyle ou aryle en position 3 du cycle indanonique conduit à un seul adduit de structure (I) ou (II) (Chekti, 1989; Chekti & Soufiaoui, 1991):

0108-2701/93/040844-03\$06.00 © 1993 International Union of Crystallography

Pour déterminer la structure du nouveau cycloadduit obtenu, les méthodes chimiques et dans une certaine mesure les méthodes spectroscopiques, se sont montrées peu convaincantes. Afin de lever toute ambiguité, nous avons soumis un monocristal de l'adduit avec $R = CH_3$ et Ar = Ph à une étude en diffraction X.

Il ressort de cette étude que celle du cycloadduit est celle présentée par (I). L'addition du dipole-1,3 s'est faite d'une manière régiospécifique sur le dipolarophile: l'oxygène du dipole-1,3 se fixe sur le carbone 2 du cycle indanonique. La réaction est aussi stéréospécifique, l'approche du dipole se fait d'une manière anti par rapport au groupement R porté par le carbone 3 du cycle indanonique.

La Fig. 1 montre une vue ORTEP (Johnson, 1965) numérotée des deux molécules constituant l'unite asymétrique. Les coordonnées des atomes non-H sont données dans la Tableau 1, la Tableau 2 le longueurs et les angles des liaisons pour les atome non-H. Au vu de l'ensemble des résultats, on observ une bonne homogénéité dans la géométrie global des deux molécules constituant le motif. Les géom étries des deux molécules sont très voisines et n diffèrent que par de faibles différences d'angles d torsion (environ 2°) pour les liaisons en libr rotation. Les différences les plus notables résiden d'une part dans les contacts intermoléculaire O1…H46 et O31…H16 qui ne sont pas équivalen [respectivement 2.40 (2) et 2.46 (2) Å], d'autre par dans la configuration enveloppe des cycles N1-O2-C10-C12-C11 et N31-O32-C40-C42-C41, le premier étant plus ouvert de 2.1 (1)°.

Partie expérimentale

Données cristallines C24H19NO2 7 = 4 $D_x = 1,25 \text{ Mg m}^{-3}$ $M_r = 353.4$ Mo $K\alpha$ radiation Triclinique $\lambda = 0,70926 \text{ Å}$ $P\overline{1}$ a = 10,633 (4) Å Paramètres de la maille à l'aide de 25 réflexions b = 11,648 (6) Å c = 17,236 (7) Å $\theta = 8 - 11^{\circ}$ $\mu = 0,74 \text{ mm}^{-1}$ $\alpha = 76,30 (3)^{\circ}$ T = 294 K β = 83,16 (3)° $0.25 \times 0.22 \times 0.20$ mm $\gamma = 64,95 (3)^{\circ}$ V = 1878 (2) Å³ Blanc Collection des données $R_{\rm int} = 0.024$ Diffractomètre Enraf-Nonius $\theta_{\rm max} = 25,0^{\circ}$ CAD-4 $h = 0 \rightarrow 17$ Balayage $\omega/2\theta$ $k = -12 \rightarrow 12$ Correction d'absorption: $l = -21 \rightarrow 21$ non 3 réflexions de référence 4727 réflexions mesurées fréquence: 60 min 1980 réflexions variation d'intensité: 0,4 indépendantes 1980 réflexions observées

$[I > 3\sigma(I)]$

Affinement

Affinement basé sur les F	$w = [\sigma^2(I) + (0,04F_o^2)^2]^{-1/2}$
R = 0,047	$(\Delta/\sigma)_{\rm max} = 0.3$
wR = 0,047	$\Delta c = 0.80 \text{ e}^{-3}$
S = 1,3	$\Delta p_{\rm max} = 0,00 \ {\rm e \ A}$
1980 réflexions	$\Delta \rho_{\rm min} = 0.05 \ {\rm e \ A}^{-5}$
397 paramètres	Facteurs de diffusion de
Affinement des atomes	International Tables for
d'hydrogène sur x, y, z	X-ray Crystallography
seulement	(1974, Tome IV)
d'hydrogène sur x, y, z seulement	X-ray Crystallography (1974, Tome IV)

Tableau 1. Coordonnées atomiques et facteurs d'agitation thermique isotropes équivalents (Å²)

Béq	=	$(4/3)[a^2B(1,1) +$	b ²	$^{2}B(2,2) + c^{2}B(3,3) +$	$ab(\cos\gamma)B(1,2)$
-		+ $ac(\cos\beta)B(1.3)$	+	$bc(\cos\alpha)B(2,3)$].	

é					
J		x	у	Z	B _{éq}
1	01	0,6047 (5)	0,9628 (4)	0,3386 (3)	4,7(1)
s	02	0,6890 (4)	1,0934 (4)	0,1737 (3)	4,0(1)
s	031	0,1759 (3)	0,5943 (3)	0,8389 (2)	5,1(1)
	032	0,3707 (3)	0,4189 (3)	0,7270 (2)	3,80 (9)
e	N1	0,8142 (5)	1,0584 (5)	0,2144 (3)	4,0(2)
e	N31	0,2551 (4)	0,4675 (3)	0,6770 (2)	3,7(1)
1-	Cl	0,5624 (6)	1,0027 (5)	0,2711 (4)	3,1 (2)
•	C2	0,4213 (7)	1,0851 (6)	0,2428 (4)	3,8 (2)
e	C3	0,3057 (8)	1,1541 (7)	0,2853 (5)	5,2(2)
le	C4	0,1842 (8)	1,2266 (7)	0,2439 (5)	6,1 (3)
••	C5	0,1762 (8)	1,2249 (7)	0,1647 (5)	5,8 (3)
C	C6	0,2917 (7)	1,1546 (7)	0,1218 (5)	4,8 (2)
it	C7	0,4176 (6)	1,0846 (5)	0,1637 (4)	3,3 (2)
s	C8	0,5553 (6)	0,9963 (6)	0,1312 (4)	3,4 (2)
	C9	0,5480 (8)	0,8664 (7)	0,1267 (5)	5,3 (2)
lS	C10	0,6550 (6)	0,9769 (5)	0,1957 (4)	3,0 (2)
rt	C11	0,8706 (6)	0,9357 (6)	0,2372 (4)	3,7 (2)
	C12	0,7961 (6)	0,8641 (5)	0,2123 (4)	3,4 (2)
	C13	0,8744 (7)	0,8038 (6)	0,1430 (4)	3,7 (2)
_	C14	0,9023 (7)	0,8773 (6)	0,0726 (4)	4,0 (2)
	C15	0,9747 (8)	0,8219 (7)	0,0094 (5)	5,4 (2)
	C16	1,0194 (7)	0,6885 (8)	0,0159 (5)	5,6 (2)
	C17	0,9916 (8)	0,6164 (7)	0,0850 (5)	5,9 (2)
	C18	0,9187 (7)	0,6712 (7)	0,1478 (5)	4,9 (2)
	C19	1,0016 (7)	0,8720 (6)	0,2815 (4)	4,0 (2)
	C20	1,0752 (8)	0,9419 (7)	0,2901 (6)	6,9 (3)
	C21	1,1907 (8)	0,8817 (8)	0,3369 (7)	8,5 (3)
	C22	1,2375 (8)	0,7563 (8)	0,3727 (5)	6,9 (3)
	C23	1,1675 (8)	0,6852 (7)	0,3657 (5)	5,5 (2)
	C24	1,0487 (7)	0,7450 (6)	0,3189 (5)	4,7 (2)
	C31	0,3005 (5)	0,5344 (4)	0,8315 (3)	3,6 (1)
	C32	0,4043 (5)	0,4518 (4)	0,8911 (3)	3,3 (1)
	C33	0,3836 (5)	0,4095 (4)	0,9712 (3)	4,1 (1)
	C34	0,4975 (5)	0,3306 (4)	1,0187 (3)	4,2 (1)
	C35	0,6305 (5)	0,2981 (4)	0,9831 (3)	4,8 (2)
	C36	0,6508 (5)	0,3417 (4)	0,9022 (3)	4,1 (1)
	C37	0,5354 (4)	0,4202 (4)	0,8573 (3)	3,1 (1)
	C38	0,5305 (4)	0,4882 (4)	0,7699 (3)	3,3 (1)
	C39	0,5748 (5)	0,6023 (4)	0,7610 (3)	4,7 (2)
	C40	0,3780 (4)	0,5327 (4)	0,7495 (3)	3,2 (1)
	C41	0,2106 (4)	0,5904 (4)	0,6553 (3)	3,1 (1)
	C42	0,2999 (4)	0,6468 (4)	0,6834 (3)	2,9 (1)
	C43	0,3850 (4)	0,6847 (4)	0,6143 (3)	3,1 (1)
	C44	0,3666 (5)	0,8143 (4)	0,5889 (3)	4,2 (1)
	C45	0,4444 (5)	0,8474 (5)	0,5231 (3)	5,5 (2)
	C46	0,5408 (5)	0,7552 (5)	0,4856 (3)	5,1 (2)
	C47	0,5608 (5)	0,6266 (4)	0,5118 (3)	4,4 (1)
	C48	0,4850 (4)	0,5919 (4)	0,5755 (3)	3,5 (1)
	C49	0,0925 (4)	0,6634 (4)	0,6024 (3)	3,4 (1)
	C50	0,0211 (5)	0,5995 (5)	0,5800 (3)	4,9 (2)
%	C51	-0,0917 (5)	0,6690 (5)	0,5310 (3)	6,1 (2)
/0	C52	-0,1389 (5)	0,8018 (5)	0,5051 (3)	5,3 (2)
	C53	-0,0694 (5)	0,8638 (5)	0,5277 (3)	5,8 (2)
	C54	0,0429 (5)	0,7961 (4)	0,5775 (3)	4,6 (2)

Tableau 2. Paramètres géométriques (Å, °)

01 01	1.210 (8)	C20 C21	1 274 (12)
OI-CI	1,210 (8)	C20-C21	1,574 (15)
O2-N1	1,434 (8)	$C_{21} - C_{22}$	1,340 (11)
O2_C10	1,502 (8)	C22—C23	1,359 (15)
O31C31	1,215 (5)	C23—C24	1,401 (11)
O32-N31	1,416 (5)	C31—C32	1,450 (6)
O32C40	1 500 (6)	C31 - C40	1 549 (6)
N1 C11	1,000 (0)	C12 C12	1 276 (6)
NI-CII	1,273 (7)	C32—C33	1,370 (0)
N31-C41	1,275 (5)	C32—C37	1,376 (6)
C1-C2	1,464 (8)	C33-C34	1,385 (6)
C1-C10	1,542 (9)	C34—C35	1,404 (7)
C7_C3	1 386 (9)	C35-C36	1 392 (7)
C2-C3	1,300 ())	C36 C37	1,372 (6)
C2C7	1,370 (10)	C30-C37	1,572 (0)
C3-C4	1,378 (10)	C3/C38	1,322 (6)
C4C5	1,383 (14)	C38—C39	1,558 (8)
C5-C6	1,395 (10)	C38—C40	1,535 (7)
C6C7	1.416 (9)	C40—C42	1.527 (5)
C7C8	1 522 (8)	C41-C42	1 535 (8)
0,-0	1,522 (0)		1,555 (0)
C8-C9	1,369 (12)	C41C49	1,400 (6)
C8C10	1,539 (10)	C42—C43	1,504 (6)
C10-C12	1,522 (7)	C43—C44	1,403 (7)
C11-C12	1,523 (12)	C43—C48	1,395 (6)
C11-C19	1 478 (9)	C44C45	1 401 (7)
C12-C13	1 500 (0)	C45-C46	1 364 (7)
	1,309 (9)	C45_C47	1,209 (7)
CI3-CI4	1,389 (9)	C40	1,566 (7)
C13C18	1,395 (10)	C47C48	1,369 (7)
C14C15	1,382 (11)	C49—C50	1,402 (9)
C15-C16	1,399 (12)	C49C54	1,379 (6)
C16-C17	1.365 (11)	C50-C51	1.379 (7)
C17 - C18	1 374 (11)	C51C52	1 383 (7)
C17=C18	1,377 (11)	C51_C52	1,365 (1)
C19	1,387 (13)	C32-C33	1,508 (10)
C19C24	1,361 (9)	C53—C54	1,382 (7)
NI 02 C10	106 1 (4)	C26 C37 C38	127.6 (4)
NI=02-CI0	100,1 (4)	C30-C37-C38	127,0 (4)
02-NI-CII	108,7 (6)	C3/-C38-C39	109,8 (4)
01-C1-C2	129,5 (6)	C37—C38—C40	102,6 (4)
O1-C1-C10	124,4 (5)	C39—C38—C40	113,4 (3)
C2-C1-C10	106.1 (5)	O32-C40-C31	101,6 (4)
$C1 - C^2 - C^3$	128 5 (7)	032 - C40 - C38	105 3 (3)
	108 7 (5)	o32 C40 C42	103.8 (4)
01-02-07	100,7 (5)	032C40C42	103,6 (4)
$C_3 = C_2 = C_1$	122,8 (6)	C31-C40-C38	104,4 (4)
C2-C3-C4	117,0 (8)	C31C40C42	113,9 (3)
C3-C4-C5	121,5 (7)	C38-C40-C42	125,1 (4)
C4-C5-C6	121.8 (7)	N31-C41-C42	113.8 (4)
C5 C6 C7	1165(8)	N31 C41 C49	120 5 (5)
CJ_C0_C/	120 4 (6)		125,5 (4)
C2_C7_C8	120,4 (6)	C42-C41-C49	125,5 (4)
C2C7C8	113,2 (5)	C40C42C41	99,0 (4)
C6—C7—C8	126,3 (7)	C40C42C43	117,1 (3)
C7—C8—C9	109,4 (6)	C41—C42—C43	109,9 (4)
C7C8C10	100.9 (6)	C42-C43-C44	120.2 (4)
C9 - C8 - C10	1123(5)	C42-C43-C48	120 9 (4)
	101 7 (5)	$C_{12} = C_{13} = C_{10}$	119 0 (7)
02-010-01	101,7 (3)		110,0 (7)
02	105,2 (5)	C13 - C14 - C15	121,8 (7)
O2-C10-C12	103,5 (5)	C14—C15—C16	119,1 (7)
C1-C10-C8	104,7 (5)	C15—C16—C17	119,1 (8)
C1-C10-C12	113.8 (5)	C16-C17-C18	122.0 (7)
C8_C10_C12	125.0 (6)	C13_C18_C17	120 0 (7)
NI CII CI2	114 0 (6)	C_{11} C_{10} C_{10} C_{10}	120 8 (4)
NI-CII-CI2	114,9 (0)	CII_CI9_C20	120,8 (0)
N1-C11-C19	120,6 (7)	CII—CI9—C24	120,8 (8)
C12C11C19	124,5 (5)	C20—C19—C24	118,3 (7)
C10-C12-C11	98,2 (5)	C19-C20-C21	119,1 (7)
C10-C12-C13	1175 (6)	$C_{20} - C_{21} - C_{22}$	122 (1)
C11 - C12 - C13	109 3 (6)	C_{21} C_{22} C_{22}	120.0 (8)
$C_{12} C_{12} C_{14}$	102,5 (0)	(1) (1) (1)	110 4 (7)
C12-C13-C14	121,8 (0)	0122-023-024	116,0 (/)
C12—C13—C18	120,2 (6)	C19—C24—C23	121,6 (8)
N31-032-C40	107,4 (3)	C44—C43—C48	118,9 (4)
O32-N31-C41	110,0 (4)	C43-C44-C45	119,0 (4)
O31-C31-C32	130,4 (4)	C44-C45-C46	121.1 (5)
031-031 040	123 2 (4)	C45-C46-C47	1100(5)
C22 C21 C40	106 4 (2)	$C_{45} = C_{40} = C_{47}$	112,7 (J)
C32-C31-C4U	100,4 (3)	040-047-048	120,2 (4)
C31—C32—C33	128,0 (4)	C43—C48—C47	120,9 (4)
C31-C32-C37	110,2 (4)	C41-C49-C50	119,8 (4)
C33—C32—C37	121,7 (4)	C41-C49-C54	121,7 (5)
C32-C33-C34	119.3 (4)	C50-C49-C54	118.4 (4)
C33_C34_C25	118 4 (4)	C49_C50_C51	119 7 (5)
014 025 026	100,4 (4)	C50 C51 C52	121 4 (0)
U34-U33-U36	122.2 (4)	LJU-LJI-LJZ	121,4(0)

C35-C36-C37	117,7 (4)	C51-C52-C53	118,6 (5)
C32-C37-C36	120,8 (4)	C52-C53-C54	120,9 (5)
C32-C37-C38	111,5 (3)	C49—C54—C53	121,0 (6)

L'ensemble des calculs ont été effectués à l'aide d'un ordinateur Digital PDP 11/60 et de l'ensemble de programmes SDP (Frenz, 1985).

Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope, des coordonnées des atomes d'hydrogène, des distances et angles des atomes d'hydrogène, ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 55786: 11 pp.). On peut en obtenir des copies en s'adressant à: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre. [Référence de CIF: PA1018]

Références

- Chekti, R. (1989). Thèse de Doctorat d'Etat es Sciences Physiques, Univ. Mohammed V, Rabat, Morac.
- Chekti, R. & Soufiaoui, M. (1991). Bull. Soc. Chim. Fr. pp. 127-138.
- Frenz, B. A. (1985). Enraf-Nonius Structure Determination Package; SDP Users Guide. Version 1985. College Station, Texas 77840, EU, et Enraf-Nonius, Delft, Pays-Bas.
- Johnson, C. K. (1965). ORTEP. Rapport ORNL-3794. Oak Ridge National Laboratory, Tennessee, EU.

Acta Cryst. (1993). C49, 846-848

Structure of Dimethyl 9-Chloro-9.10dihydro-9,10-ethenoanthracene-11,12dicarboxylate

JAMES TROTTER AND VIVIEN C. YEE

Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1

(Received 23 July 1992; accepted 11 November 1992)

Abstract

The two ester groups have different orientations, with C=C-C=O torsion angles of -165.7(3) and $-89.4(4)^{\circ}$ respectively for the groups remote from and adjacent to the Cl substituent. The remote ester group is therefore fully conjugated with the C=C double bond $[\cos^2(\text{angle}) = 0.94]$ and the adjacent group nonconjugated $[\cos^2(angle) = 0]$, presumably as a result of steric effects.

Comment

The structure of the title compound was determined as part of a structural and photochemical study of dibenzo-

0108-2701/93/040846-03\$06.00

© 1993 International Union of Crystallography